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SI THE ASYMPTOTIC NORMALITY OF TWO TEST STATISTICS

ASSOCIATED WITH THE TWO-SAMPLE PROBLEM

by

Saul Blumenthal

0. Summary.

In this paper we prove the asymptotic normality of two statistics whioh

have been proposed to test the hypothesis phat two spoples cone from the same

parent population. One statistic is the number of runs of X'p and Y's in the

combined sample of X's and Y's; the other is the sum of squares of "Si's"

where S is the number of X's falling between the it and (il)t 3argest V's.

Both statistics hays been studied prev4 jusly, both lead to cone$stent tests,

and both were known to be asymptotically normal under the null distributiot%.

Here we prove limiting normality under a fairly wide class of alternatives.

We also compare the limiting power of these tests. Our method, a study of

"conditional moments, can also be used to prove limiting normality of

"combinatorial" statistics of greater generality than the "sum of squares"

statistic which we study in detail,

1. Introduction.

The purpose of this paper is to demonstrate the aaymptoti¢ normality of

certain stqttetics which have been proposed for testing the "two sample"

problem. Chief among these are the Wald-Wolfowitz run statistic and a

statistic studied by Dixon (5] and by Blu* and Weiss [1], Since previous

proofs of normality under the null hypothesis exist, the main contribution

here is the proof of normality under a fairly wide class of alternative

distributions. Using this result power can be computed for the tests in

question. A comparison of limiting powers for these tests is made 4n

Section 8.



Let XI O....X and Yl '"'Yn be two sets of independent random variables,

the first set with cosmon o.d.f. T(x) and the second set vith coimon o.d.f.

G(x). We assume that both F(x) and G(x) are absolutely continuous, and have

continuous differentiable density functions f(x) and S(x), respectively.

Further, we must assume for the purpose of using a convergence theorem in

Section 3 (Theorem 3.2) that g(F'l(xV/f(F1 '(x)) (0 6 x 9 1) is bounded.

Whether this condition can be relaxed is open. For the puposes of proving

a result about asymptotic normality of sample spacings in Section 7. we need

to assume that g(F 1l(x)/f(F' 1 (x)) (0 * x s 1) is also bounded away from zero.

By the symmetry of the problem and the arbitrariness of labeling X and Y,

these two conditions imply one another. Thus if one can be relaxed, both

can be. We can note that if "truncated" tests are used, most distributions

will meet these conditions, however distributions commonly encountered fail

to meet these two conditions when x is near 0 or I or both.

We assume that (r/n) - r+rn where ,Fn r. -0 0 as n increases. In the

sequel, we treat m/n as a constant r without loss of generality.

Let Z = G- (0), Zn+l - G-1(1), and ZI <...< Zn be the values of the Y's

arranged in increasing order. For each i-l,...,n+l, let SL be the number of

X's which lie in the interval [Z i., Zi], All the statistics to be considered
can be expressed as functions of the SV. Since the Si are invariant under

probability transformations, we shall assume hereafter that f(x)=l for O x j 1,

that G(x) assigns unit mass to (0, l], that 0'(o)o0, GcI ()ql and that 8(x)

is bounded above and below (away from zero). This last assumption assures

the uniqueness of the inverse G'l(x) for all x in (0, 11.

We shall denote the difference, or sample spacing, Zi - Zl. by W1.

i-l,*...,n+l.



II
The statistic proposed by Dixon is

n+l n•1 SUS~) - +l
V2 S2l Si(Si-l)

I 1 1nt=I+ r.
n im S~ -

In Section 3, we study the distributions of "combinatorial" statistics

n+l Si
of the form kE Clearly, V2 has the same limiting distribution as

2n+l Si

r+2" Further, it is obvious that as test statistics, V2 andn i-l2

1n+l Si
£ (E ) will have the same properties. One could, in fact, consider the

n+l Si
possibility of usig (k) as a test statistic for k other than 2. Con-

i=l

sistency or lack thereof can be established easily using the convergence

theorem of Blum and Weiss [1], and power could be computed using the results

of our Section 3. We see no point in doing this here since in I[1, V2 was

shown to have some desirable power properties and no similar properties have

been established for other values of k. In Section 4, the power of the test

based on V2 is written down explicitly.

The run test is studied in Section 5 and its relation to the quantities

SI...,S n+1 is indicated there. This relation is exploited to prove the

limiting normality of the run statistic by obtaining the limiting normality

n+l
of a certain function of Sl,...,Sn+l' namely ;; where 8(x) I

if x=O and 0 otherwise.

The methods of proof in Sections 3 and 5 are similar and are justified

by the argument given in Section 2.

-3-
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It should be mentioned that test* for the one-sample test of fit which

are based on statistics analogous to the above mentioned ones were proposed

and studied by David f 4], Kitabatake [8] and Okomoto [9], [10]. In the one-

sample case, the sample intervals are F;'(1)] (il,-...,n) where
0 n on

F 0 (x) is the hypothesized distribution. The Si are then the numbers of X's

in these intervals (now fixed instead of being random). Because of the strong

resemblance of the statistics, many of the computational schemes used by

Kitabatake and Okomoto can be used for the two-sample case (see Sections 3

and 5).

In a recent article, Wilke [13] considers another statistic based on

S,...,Sn+l. He also indicates the utility of the one-sample methods

although he does not elaborate in much detail on how they are to be used.

2. General Approach.

In both proofs of normality (Sections 3 and 5) a conditional method of

moments is used to establish the asymptotic normality given the Yl,...,Yn of

n+l

a function H(S ,...S ). (In Section 3, H(S ,...,S E S2 , and
l" n+l 1 n n i Sani= 1

n+l

in Section5it is 5o(Si) where 8 (x) = 1 if x=O and 0 otherwise.)
n i=l 0

This normality will be shown to hold for almost every sample sequence

Y1,Y 2, .. We now justify the particular method employed. Denote

H(Sl,...*'n+l) by Hn(S). Denote conditional expectation given Y,.*..,Yn as

En(' 1Y) Our goal is to show that as n increases
t2c

it4(H n(S)-E Hn(S)) 2 -•-
(2.1) s e --- e

We summarize our assumptions and result as

-4-



TI
Theorem 2.1: If Rn(S) and En(Hn(S)IY) are as given above, if

4tJ[[ (%(S)IY) - E li(S)] considered as a function of (Yi ,Yn) has a

limiting non-degenerate Normal distribution, N(O, c1 ) and if

. . 2 if p is even
(2.2) np/ 2 KEnflHn(S) - Kn(Hn(s)1Y)]P1Y) 0-2 if p is add

with probability one, (where c2 is some constant) then (2.1) is true with c=-c+C2.

Proof: We can rewrite the expectation in (2.1) as

) itFn[E n(Hn(S)IY) - E Hn(S)] n te'e(nn(S) " jn(Hn(S)YY].S(2.3) 8 a-hen aI.

The normality proof then consists of 8howipt that the random variable
it,•4(H (s) - £n(H(s) jY)I t-c

[R n I] approaches ea with probability one as

n increases, where c2 is an appropriate constant, and of showing that

t 2c
i t~4ts••K(H(s)IY) " K .n-st]c-

n approaches e as n increases. This

latter convergence follows easily from the LIvy uniqueness theorem for charac-

teristic functions and from our normality assumption. Thus if we can show

the above convergence with probability one, because of the boundedness in

absolute value of the exponentials in the expectations in (2.3), it must be

that the limit as n increases of (2.3) is

"ta - 2  itt'[En(HC(S)IY) - E H (S)]

(2.4) 2 lid E a K H )

t2

which is in turn (by the result noted above) e T(cl+c2) , and this is the

desired result. (In the cases which we shall consider, Kn(Hn(S)IY) is known

to have asymptotically a normal distribution from previous work (Wýsa (1i1i], Proschan

"-5-



and thus we have part
and Pyke (ll])^of our work done in advance.)

To show the convergence with probability one of (

Sn (a it rn(H n -(S) " n(in(S)Iy))IY) we shall study in Sections 3 and 5 the be-

havior of the moments 9n{[4(Hn(S) - En (,S)IY))]PlY} p-1.,2,3... and in

particular shall show that (2.2) holds.

A series expansion (with error term) of the expression

en " (H(S)Y) ] shows that the result (2.2) is sufficient to

imply the desired convergence with probability one. This proves the theovem

and shows the direction we follow in the sequel.
i

3. Normality of Combinatorial Statistics.

In this section, we shall consider the limiting distributions of statis-

tics of the form

n+l Si(S -l)...(S -k) n+1 S

(3.1) Hi(S) l i=- (ki).

k(S) has the following interpretation: Consider all (m) k-tuples (Xil,...ik

1 f i1 <...< ik S m of the X's, and count the number of these such that all

of Xl ,.. ,X k fall in the same sample interval [Zj.1, Zj1, J=l,...,n+l.

Although we shall carry out the details only for k=2, it will be seen that

the method will suffice for any k, and in fact will suffice to show the limit-
k1 k

ing joint normality of any finite set (H1 (S),...,HnP(S)) of p of these

n+l
quantities. Noting that H = - E S ! r, it can then be seen thatn n i=l i n

-6-



t:he reslt obtaied for H(S)k il.,.. ethe limiting normality of - L

since the latter is a linear combination of .P(S), p , k. The same, argument
1.

n+l k1  n+l k
shows that finite collections of the form, E . - 11)

n .i- i,

have a limiting Joint normal distribution.

For real numbers Xl,...Oxk such that 0 < x < 1, (i-l,...k), we define

(3.2) tk(Xl,...,xk) . 1 if xl,....xk fall in the same sample interval

- 0 otherwise

Note that implicitly tk(Xl,...,xk) is a function of Y1 ,...9Yn as well as

xl, ... ,Xk Since the X's are independent, we would have that P[tk(Xi a,..,Xik)

n+l thlAy] E k where W ii the length of the i- sample interval (based on
iml

Y 1,...,Yn ). Note that we can write11.,n•

(3.3) Hk(S)- 1: tk(Xi ..**f

The sumE extends over all k-tuples (il, ... ik) 1 S i 1 <...< ik 9 m unless

otherwise stated. In the form (3.3), Hk(S) looks deceptively like a "U statistic",

which it is not in the strictest sense. Thus we cannot use the theorems for

"U statistics" but must treat this saparately. Note that

n+l
(3.4) mn(tk(Xil )Iy) , ,13• n .,xk i.-l"

Thus we have that k(S~l) E Rn+l Wk)
(3.5) gn("•(HS)I) - £ z (t (Xi ,...,Xi HI) - £

(35 .nnn n ik n iul

(m) n+lk k-l rk n+l
n(£ w)un n(L W)+n,S-1 7 1-1

.- '-



where 4- 8n approaches 0 stochastically as n increases (see (3.21)).

The limiting standard normality of

n+l k 1 1k

(n Ei - k. gk(x)dx)iml fi

(3.6) 0 I i
(((2k)! - 2k(k! 2]f gl12k (x)dx - [(k-1) kf gl-k(X)dX]2)*

0 0

has been demonstrated by Weiss [14], and again by Proschan and Pyke [11].

In view of Theorem 2.1, it remains to study the conditional moments of

n+l k
(37) .. ik. i £ W )]

in order to verify (2.2).

Counting the various terms involved in the moments becomes very complicated,

and to avoid excessive notational troubles, we shall study in detail only the

case k-2.

We shall show that

Theorem 3.1 Let t 2 (Xi, Xi ) be defined by (3.2), and g(x) the density of

the Y's be bounded on [0, 1], then

n+l P.3.5...

n --)o ico n 2(p-1)(p-3)...3.1]cp/2 p,2,4

with probability one, where Z extends over all pairs (i < J). The constant c

is given by
1 1 1

c - r 2  
gf 

1'(x)dx + 6rf g' 2 (x)dx - 4r(f g-l(x)dx)2].

0 0 0

Proof:

Our methods of counting in the proof of (3.8) are based on those

-8-



used by Daniels [3], Hoeffding [7], and Okamoto [10], chiefly the last.

j ~Let l
1+1S[(3.9) ,2(Xi , Xj)=t =2(Xi, X) "ti E i

We are studying

(3.10) - E [n'P/ 2 (z*(N Xj))PIy]

which can be written as

(3.11) Ip n-p/2 E n[*2 (Xi ) ... *2 (Xi , Xp )IYI

where summation is extended over all sets of pairs (il, J 1),...,(ip, p

i i k < Jk , kl,...p. Following Okamoto, let d denote the number of

different integers among
(3. 12) ils1, 1;.O.0;1p P.

We now divide the p pairs of subscripts into e classes. Pairs of subscripts

in the same class will be "linked" in the sense used by Daniels [3], and pairs

not in the same class will not be "linked". The classes of "linked" pairs

are equivalence classes and the members can be found as follows. The pairs

(ikhJk) and (i&,J 4 ) are said to be linked neighbors if one or more of the

equations ik-i4; ik-jt* Jkui4, Jk=kt are satisfied. The pairs (ikDJk) and

(i,,j,) are linked if either they are linked neighbors or there is a pair

(ItCj a) so that either (ikuJk) and (iaJ) are linked neighbors and (iJ )

and (ituJL) are linked or (i•,J,) and (iajoj) are linked neighbors and (i aj C)

and (kJk) are linked. This inductive definition uniquely determines the

sub-classification of the p pairs of subscripts.

We then write
p 2p

(3.13) E- E A d
eol d=2

where

(3.-1) Aed n nP/2 z(e'd)E [*2 (Xilx ) "'" *2(Xip'2%p) IJ¥"

-9-



E(ead)standing for suation over all sets of pairs (Li 1,J),...4(ipJi) such

that the number of different inte~rs is d and the number of equivalence classes tso

e. We shall now investigate

(3.15) Kn[*2(Xi , Xl) ... *2 (Xip- X p)IY] "i

in Aed. Let e equivalence classes consist of p1 ,...,pe pairg. Obviously,

( 3 .16 ) P -P 1  + ...+ P e * I
To evaluate (3.15), we can assume without loss of generaliy that these classes

are (we put the subscripts in parentheses after the i's and J's to simplify I
typing)

(3.16.1) i(), J(1);... ;i(pl),J(pl),

(3.16.2) i(P l +1),J(pl+l); ... ;i(pl+p2 ),J(p1 +P2 ) ...

(3.16.e) i(pl+p2+...+Pe~ll), J (pl+pe+...+Pe.l+l); ... ;i(p) ,J(p).

By independence of the X's, we have En(.IY) in (3.15) distributed to e

classes, and (3.15) becomes the product of e expectations

(3.17.1) 'n1*2(Xi(1),Xj(1)) *.. *2 (X i(pl),Xj(pl))IY],

(3.1'7.2) Z nl*2(Xi(pl+l).xj(p 1+1)) ... *2(X '(pl+p2)*xj(Pl•.p2)) IY] ...

(3.17.e) nE*~2(Xi(p-pe0+l),Xj(p-pe+l)) ... * (Xil(p),Xj(p))IY1.

Denoting by d the number of different integers in the class (3.16.g)

gol,2,...,e (d 5 Pg) we have

(3.18) d- dI+de+...+de

The conditional probability Pn('I.Y) that a X's fall in the same interval is

n+I
iE l1 so that expanding the product in (3.17.g), using the definition (3.9),i=l

we have that the expectation (3.17.g) is of the form

-10-



r

n+l d5  n~l d n+l n+I d1 4+Wl
19)~ ~ ~ EW9+ o( W 8)( E W2) +all( E W X) E wi)

(3.19 i + m 01 La + i -i i-I.

n+l d n+l n~l d -1 n+l

+ 0 EW i)( z i$) 8 + a 12( EU 5i E( Uj)
O2ni i 1. 1 mlu

n+l d -2 n+l n+l p
+ a22( E W )( z w2) +...+ a d W2) .

101 iml 14 d =I

Clearly, the coefficients of the above polynomial, the a i's depend oq the

d and p , and not on n. We need not evaluate them specifically. At this

point, we call upon a result due to Weiss 1131.

Theorem 3.2 (Weiss) For each t k 0, let Rn(t) be the proportion among

W1 ,... Wn+ which do not exceed t/n, and let

1

(3.20) R(t) - 1 -f .- tg(x)SCx)dx.
0

Then if S(x) is bounded on [0,1],

(3.21) P( lim sup IR(t) - R(t)I - O) - 1.
n-.•m t• 0

Thus, we have

nul 
n

0

and
£11na £ =~ 0. etg(x)g2(i,,)dxdt =r(cx~l) 9 -a (x) dx

(3.23) lim F. e -faesx~a~ d 1
n -•'m i=1

0 0 0

with probability one.

Using this last result in (3.19), we see that with probability one, (3.19)

is of order O(n g ). Thus, (3.17.9) is of the order in n O(n"£ ) w.p.l.

By (3.18), we have the order in n of (3,15) is w.p.1.

5

a - (d -1) = e-d

-11-



Since E(e,d) in ( 3 .1 4 ) contains O(m d) term of this magnitude, we have r.p.l,

(3.24) Aed - n-p/2 O(md) O(ne.d) . o(ne'P/2).

If e > p/2, then from (3.16) there is at leat one g such that p-ml and

(3.17.g) vanishes because of (3.9) and (3.4), whence (3.15) also vanishes so

that A ed=O. We have proved so far that

50 if e > p/2
(3.25) Aed = (L.ne-p/2, w.p.1 if e S p/2

From (3.13) and (3.25) it follows that ip = c(i) w.p.1 for odd p.

In the case when p is even, we need only consider Aed for emp/2 because of

(3.25), i.e.,
2p

(3.26) P.p E Ap/2,d = A (say) (w.p.1).
d=2

The reasoning which led to (3.25) shows that positive contributions to A are

made only when each pg=2, g-l,...,p/2. This means that each d (g=l,...,p/2)

has to be either 2 or 3. If d =2, then by (3.23), n times (3.17.g) converges

with probability one to
1

(3.27) I(g) = 2 f g 1 (x)dx
o

If d =3, we have n2 times (3.17.g) converging with probability one to

1 1

(3.28) i1(g) - 6 f g 2 (x)dx - f(f g'-(x)dx)2.

0 0

If, q of the numbers dl,...,dp/ 2 are 2 and p/2-q are 3, then using (3,27)

and (3.28), we have

(3.29) lim nP'qEn [ 2 (X* , X2 ) ... ir2 (xi , Xjp)Iy] = (I(g))q(II(g))p/2"q
n-- p p

with probability one.

-12-



!
i "o.,Cob:: , (3.29) with (3.26), (3.14) and the remarks preceding (3.27),

J: we have

-3/ p/2q e)q,&),/q
(3.30) A - n'3p/2 - nq(((,)) ( 1 1 (g))P/2" •(q) t•'. q)

with probability one, where ip(q) is the number of ways of classifying p pairs

(i 1 J 1),....(i pJp) into p/2 sets, q of which have 2 different subscripts,

and p/2-q have 3 different subscripts. Clearly,

(3.31) q4(q) - (P/2)(p- 1 )(p- 3 ) ... 3.1 - q 2 p/2))

By *(n, q), we represent the number of ways of choosing il.jl;i 2 ,J 2 ;...;ip, pi ,
1S i < j S a so that i 8ig+l; Jg-jg+l, 'l,35,9,'..,2q-l; and so that one

of the equalities { ig+&l i =iel} is satisfied for g-2q+l, 2q+3,...,p-l.
fi8=jg+l Jg"Jg+l

We can see that *(n, q) is given by

(3.32) *(n. q) - ( 2) (m-2q+2 )(M-2q ) 2(m-2q-2) (m-2q3) 2(m-2q-5)2 2.

(m*q-3p/2+l)

j-o ,jo J-0 J-0

Using (3.31) and (3.32) in (3.30), we have

I . rP p/2 .

(3.33) A , r3P/2 pz -1 )q(p/2)(I( ))q(II(g))P/2-q + o(l)
2P12(p12)' q-O q

with probability one (recalling that mmrn). Clearly, (3.33) reduces to the

simple expression

(3.314) r p r- { (x)dx + 6r gl2(x)dx - 4r( g-i(x)dx) 2

2P (p1)o 0 0

This completes the proof of Theorem 3.1.

-13-



4. Asymptotic Distribution of V2 Statistic.

We can combine the results (3.5), (3.6), and Theorem 3.1 to infer the

following

Theorem 4 .1 Under the assumptions of Theorems 3.1 and 7.1, the distri-
1n+l Si

bution of (S(' i ) - r2  (x)dx)

0(ii.i) 1 1 1

r[fg- (x)dx + 6 JF g-2(x)dx + 2r 2f g-3(x)dx - r(r+4)(f g- 1(X)cX)2]i

o o 0 0

approaches the standard normal distribution as n increases.

Sinc V2 r +2(1n+l S iSince V2 = r + 2( ( )), we can compute the power of tests based on

V2 using the theorem above. A test of the hypothesis that G(x) = F(x) (the

uniform distribution) (0 9 x 9 1) based on V2 would reject this hypothesis

whenever V2 exceeds Cn(a) where a is the desired level of significance. We 1

shall use the following standard notation: I
(4.2) O(v) = ( L )f e-(t 2 /2)dt1;7 v

and

K(c) is the number such that O(K(c))= a

Then the above theorem shows that for large n, Cn(a) is approximately equal to

(4.3) ( r )[k (l+2r) + 2(r+l)K(a)).

5. Limiting Conditional Normality of the Run Statistic.

In this section, we consider the limiting conditional distribution of

(5.1) Ho(Sl ... 8,Sn+) = - (the number of Sl .... OS+l which equal zero)
0 n~~l n+l lw

We shall abbreviate Ho(S 1 ,...,S r, ) by Ho. Denote the number of runs of X's

-14-



and Y's in the combined ordered sample by Uno It is eaily seen that the

j number of runs of X's is the same as the number of cells containing at least

one X, which is (n+l)(1-Ho0 ), and from the definition of U n, we see that U

differs from twice the number of runs of X's by at most one. Formally, we have

(5.2) I(U/nr) - ((n+l)/n)(1-H )I '

From (5.2), we see that if H is asymptotically normal with mean p and
o

variance a2, Un/n will be asymptotically normal with mean 2(l-0) and variance

4o2. We shall now examine the distribution of H
0

Since ,a have

(5.3) P(SiuoIYI,...,Yn} n (1-Wd)m

thwhere Wi is the length of the i- spacing, it follows that

n+l(5.4) E n (H0ly) -(1/(n+l) ) E (l-Wi m .
i= 1

n+l
It is easy to show that asymptotically(l/(n+l)) T- (l-W )m has the same

i-i
n+l -nrWi

distribution as(l/(n+l)) E e The asymptotic normality of the latter
i-1

can be demonstrated by the method employed by Weiss [(14], or the generalizatinn

of Proschan and Pyke [11] (see Section 7).

From Theorem 2.1 of Section 2, it follows that we need only consider the

limiting behavior of the conditional moments of r"(Ho - an(HoIY)). Using

the computational scheme which Kitabatake [8] employed to solve the one-sample

analogue of this problem, we shall prove the following

Theorem 5.1 Let H be defined by (5.1) and let g(x) be bounded on [0,1], then

(5o5) lim (nL/2(H - - {4(Holy)))...lC4&/2 if 4 -1,3,5,...
~ , n, i

n --)I g-/ if & -2,-,65....

-15-



with probability one. The constant C is given by

1 1
(5.6 C dx -r(/ e'(X) dX )2

_r SX - -" (r+g(X))2
0 0 0

Proof:

Let Jo = (n+l)Ho. Let Vi = 1 if Si = 0, and 0 otherwise. Then,

n+l(5-) o= E Vi

i=i

and

(5.8) En (Vly) = (1-W,).

Also,

(5.9) En (J(8)lY) E r (1'Wi ' " W sM

where

(s) -1) .. (Jo-s+i) if a > 0

j(O) . 1
0

and £ stands for sumation over all permutations (i 1 ,...,is) of (n+l) integers
nP5

such that 1 6 i1 n+l, 1i4tk if Jlk (j,k1cl,2,...,n+l).

We note also that we can write (w.p.l)

5
-r E (nW1 )

(5.10) (l-W1 -...- Wi ) ae J=l El- I: ( £ (nWij))R + O(2)].s J- 1

By the binomial expansion, we obtain

(5.11) E (n 9+2/2 ( JO - En(HoIY)) +2Il)

-16-



42/2 %([ J (Ho J - E (H1)Y)] 4+ IY)

n 4+2/2 o #,+ I Jo ((
. •1: (-1), ( z~n(n7 )t2Jy (znoly))J

LJ- 0  n~ (( T a 4

4+1 4+1 Jo )+1J IM) (EH0
- E (-I)j ( ) K(( -7 )+Y))i+l]

We can express .Ik in term of factorial powers as
0

(..1) k k k (:)Bk-q) a(k'q)

q=o q q 0

whore B(n) i the Stirling number of order n and degree r. From (5.9) andr

(5.12) we obtain that with probability one

JO )#+2-J y} = j(9+2-J)

(5.13) En(( j i)+L2 1 I.) - E 0 jY)

J(4+1-j) j(t-j)
+(4+2-j)(4+l-j) 1 ' o olY + E .

2> n+l n(n+l) 4+l-J n(~)4- y (P

To evaluate the term on the right of (5.13), we use (5.9) and (5.10)

each computation, and (5.13) again to obtain
i(s) (1-W t . . W i )m

(5.14) E-n( 0 Y) E T(n+l)a nP (n+l)'

B a

-r( E (nW ))-r( E (nW1 ))
F.• Jul j S .(Y n~j) -

E-~• (nWij) ernWi -r E- (nW.)Sr a+l e J1
o-E- 2 )(r.P (n+l)" P i jl nP.-j (n+l)"

0 ~-17- 1



s-2
-2mW1  -r E (UW~

E+T n+-2
jul e-2 (n+l)a-

s -2
(s1)a2)e-3rnW1  -r E (tM 1 L

e 1 a J-2

(n+1)8 np -2 (n+1)s-2

xt1(n).-riW1  e -r Eul (n

n ~ ~ -(nW aJ 1)

(n- nI nWl )2. j- jnl

+ rs~s1) ~8£1

2(n4.1) 2  tiP 1  (n+1)28 -

-rriW -r E (nW )
r s- n-,. (nW1 ) a )2 EJ. I I

2T17T n1 3~ n -2 (n+ 1 )s

s-2
-2rnW -r E (nW)

+rs(&-I) n+l (nW1 )a e jul
2(+ )2  E 11+1 ) ( £ )

2 ( n~- 2 1 n P+s -

s-2

-3rnW -r E (nW )

2(n+1)3 nP -2 (iii)s 5-2

n r -W 1  -r E (nW1 )

-18-



Iit ~ U +1 *O- IT)

(s-l)(s2) *+1

~ -s-2 (s-

n1 (n+l) 8-2(~l

with probability on*.

Using (5.li4) on the right side of (5.13) With the appropr~.te values of

a and jumping together termn of order (pr), we obtain

nl-rndE

(5.15) gn(( 0n+O )+i I z ~

- r (nW 1)
2 e a JM I... +1 ae*w

2(n+l) iul n+l a~( ;71 )#l0) + 1 imi

n+l -2rnW e ~ n rWiJ -
-E -- ( )2+o0(;)] 1(( 0 T

with probability one.

Putting the result (5.15) into the expansion (5.11) we obtain~

(5.16) Inn~4/ -n+T n In0ioy))4+ ~

922 +1 41l JO 4-1 rk+ l

n+ n.(IJ z(( -0 ) IY)(9 (HIY))J E

.19-



-r fti(nwd)' 4

(+) E (-)J4  (H +1

+( 1) (nW1  e0 1 +1a
n E( £ )J4) -T 44-y (I £HIW TE

i-1 Lii.

n (nw1)2 -r41j ~4+

- 2(+1 (H I+ -K QY) ] I (n4+112 I (Holy)) 41 l)

:i+1w (nW 1 )
n+ i n+

n n

n4+1) .(n4/2 d i -rni) z 0(u0 Y) I~ 1 41/2W n+I 41m

.r( E - ] - 0 a% Hl) Y

vitI prbblt one.
Dya udcie ruenw obanfrm(51)ttvp

-20-r, n+ 2r~



II

(5.17) En(nt (uo-zn (HoY))2 4  = (29-1)(24-3)...5.3.1 E

ii~

n+o -2rnW n+l (nW1) "rnWi
E~ - l r( £ E )S14+ 1(-)£- *-I n+1l

isi ul

and

z n(n +*(- n(Holy))24+ ly) - o( 1(2
n

Using the Weiss convergence result, Theorem 3.2, we have

n+l "rnW i n+1 e2rnW i n+l (nWd) )(5.18) li- E E. •~ r( E. )a]
n -a ini i=l

1 1 1

1 ff g WdX g ()dx -r(f eLLdx)2o o s (r+g(X)) 2

with probability one.

Taking limits in (5.17) and using (5.18) yields the desired result (5.5).

Thus Theorem 5.1 is proved.

6. Asymptotic Distribution of the Run Statistic.

Now we can put together the remark following (5.2) with the results of

Theorem 2.1, Theorem 5.1 and Theorem 7.1, to obtain explicitly the limiting

distribution of Un, the number of runs in the combined sample of X's and Y's.

Theorem 6.1 Under the assumptions of Theorems 5.1 and 7,1, the distribution of

1
(6.1) Fn ( 1U -2 f -f*~)

0
11 1 1

2[f 4fgtx 2raf e.J x) L-yx - r(f e~~i~Lx ) -r'4(f a ... (1.)a

0 (r+()) (r+g(x))) o ( ())

-21-



1

approaches the standard normal as n increases.

This is the same as the expression derived by Wolfowitl (16] who used a

somewhat controversial method of proof.

Using the theorem, we can set up a test of the hypothesis that G(x) - F(x)

(the uniform distribution) based on Un and having size of approximately a for

large n. Letting O(v) and K(a) be defined by (4.2), the test based on Un will

reject the hypothesis of equality whenever Un/n is less than

(6.2) (2r/(l+r))[ 1 - (K(a) 4'J /(l+r)4 )4.-

7. Distributions of Functions of Sample Spacings.

In the proofs of normality in Sectiors 3 and 5 and in the computations of

power in Sections 4 and 6, we used the asymptotic normality of certain functions

of sample spacings. In particular, we used the

Theorem 7.1 If g(x) is bounded from above and below away from 0 on [0,1],

then as n increases, the marginal distributions of
I

n+l w 2 1Nr'; (I E- (nWi• 2j - x

2[2 ge x 7gx
071 9 0

and

(7.2) X

n iml 1~~
0

0 o 0 o (r+g(x)) 3  0 (r+g(x)) 2

each approach the standard normal distribution.

-22-



Proof:

In (114], Weiss announced the result (3.6) which specializes to (7.1).
T The derivation given in [14] holds strictly only for S(x) a stop function.

When g(x) is continuous and has a continuous derivative, the results announced

by Proschan and Pyke (11]. imply (7.1). The result (7.1) can be derived using

the method employed below to derive (7.2).

The result (7.2) also would follow from the results announced in [11].

The method used there is based on a series expansion of the functions in-

volved (Pyke-personal communication). We shall illustrate the method by de-

riving (7.2) when S(x) has a bounded second derivative, and S(x) is bounded

away from zero.

To obtain (7.2), we observe first that (qI/n)E(l-Wi)nr has the same

distribution as (%In)es ri. Denote G(Zi) - (Zi. 1 ) by Ui (14 ,...,n+l).

Note that
i

(7.3) G(Zi) E £ U il,...,nal.
jul

U ,...,Un+l are distributed as sample spacings based on n observations from

a uniform distribution. Also, if Vl,...,Vn+l are exponentially distributed

(f(v) - e'v), and if Tn - V1 +...+ V n+0 then U,.*.*.Un~l and -
n n

have the same joint distribution.

By the man value theorem,

(7-4) Ui - )WI - gG'(I)w + (g(Zi) - sG'(i.))Wi (zi_1 < Zi< Zd).

Thus,

W i i ni sn-u n

(75)- /uGIgo(1) +WU(gG. (I) -&('Z'))/g2G-(1)

+ W(2 1(j) "1))2

-23-



Also,
(7.6) S(z,) - ••€ .- Z¢)- S) • '•€) x

2 I 1)l < 8 < G(Zi).

Note that

(7) d a 1-(x)) g(u) (UIu.o-l (x)

We shall denote gG"1(i) by g, and d (u) I by

Now we shall expand ( r•/n)e around ( q/n)Le in a Taylor

series with remainder term based on the second derivative, using (7.5), (7.6)

and (7.7):

(.) e-nWi F- •(,-rnU /s, j. s•.-rui/si
(7.8) . (e +E r+ (Gczi)- 1)(nu,)e )

Li

d 2  -1

+ r\I~£ (n~)e ~ ( .- (G(Z) G(Z~) c()~e(~i4'

(n a ni~e 1n5d +(()iS .
- r's(z)) "-us "rnua < 8 <) G('•i))"

We now observe that of the three summations on the right side of (7.8), the

latter two converse stochastically to zero. This observation follows from

the assumptions about g(x) and its derivatives, the fact that 1 kaI1ui

is uniformly bounded for all n, the fact that G(Zi) - G(Z ) < Ui, and the

-24,-



Glivenka-Cantelli Lamm which says that nJ- sup (G(Zi)o .) converses
I

stochastically to zero. (In the term in question, (G(Zi)- 1) appears as a

SI square.) Using the Slutsky Proposition (Cram~r [2], p. 255), we can say that

-rnWi
(NF/n)Ee has the same limiting distribution as

(7")gii E1+r(SI/S) (GZn)- Ui

Using the remark following (7.3), we see that (7.9) has the same limiting

distribution as

M"rv /Tns 9~ ()•
(7.10) -In. h [1+r(I-) (G(Zi)" ) (nv /TA)

ig
where the V i are independent exponential random variables iI..,+) and

T n-LVi. We now examine separately each of the term in (7.10). Expanding

the first term around (q'?iit)EA -rnv l li we obtain

r V /T g-rVSi

(71) "v ni %"n . _i [1+(r/gi) Vi(l" i-)]
a n

+ -n E (rVVIgh) 2 (1- a e-r-v- ii

n

where V I/T < V < V . Noting that J-8(1- -I) approaches zero stochastically,
VIn I I T

that T Inn approaches unity stochastically, that

(7.12) 1- 1- - (1 (V -1)ynt

and the boundedness of xe" x again, and the fact that

(7.13) E r Vi si i /g O J 1 tea(x) dx
i 0o (r+g(x))'

-25-



as n increases, we can again use the Slutsky Proposition to conclude that

"-rnV /T
(4-n/n)E a as the same distribution as

S(7.• (,,pn) •:(4 + (vi.1)f ,,o) .
7n0o (r+g(x))'

The second term in (7.10) is a little more complicated, but using (7.3)

to express (G(Zi)- .1) as a function of Vl,...,Vn+i, and (7.12), and the
n

Glivenko-Cantelli Lemma and the fact that n -8 (I- -) approaches zero
n

stochastically, along with the Sluteky Theorem, we conclude that the limiting -r

-rnV£T$

distribution of (4'nIn) E r(gj/g3)(G(Z~) 1)(nVi/Tn a t/ngi is the same

as that of
n+l -rV/s

(7-1•5) r(srn/n) E (gj/g 2) V a i (1/n) L (V- 1 )
iul J-1

n+l -rV/i

- (v 1 ) (1/n) E (j/n)(g/ge) vj
J-1

Since

I n+l -rVjg / /E. (g /g2) va A _- (x) d.J=l n 0 (r+S(X)) 2

(7.16) and
Sn+l _ 1nv -l/si

r. (i~x) • r (gl/g•)vt
n J -l n E

1

.ý.) x) dx 0

G(J/n) (r+g(x)) 8

as n increases, by re-arranging the order of.'the first two sumations in (7.15)

and using Slutsky's Theorem, we find that (7.15) has the same limiting distri-

-26-



bution: a1

(7.17) ,(q'n/n) E NvC.O I l~/)(~("X G(x+s(x)dx

£ (r+(x)) 0 '(x+(x)x

Integrating the expression in bracket& in (7.17), we observe that (7.17)
simplifies to

1

(7.18) r(4I/n) E (Vi-1) ( - f" dx )
0

Putting together (7.18) and (7.14), we conclude that (<.f/n) E e

has the sam limiting distribution as
(719.rVi/gi 1 f 1

(7.19) (,,•/n) 1:a-. / + r(V .1) (__.rg(.x)
E r+rg 0 (r+g(x))*

It now involves only a simple computation to verify the mean and variance

given in (7.2), and limiting normality follows from the standard central limit

theorem applied to (7.19) which is a sun of independent random variables.

8. A Comparison of Limitins Power.

As an application of the results of Sections 4 and 6, we shall compute

the limiting power of the V2 test and the run test against sequences of al-

ternatives approaching the uniform distribution, end we shall obtain an ex-

pression for the relative efficiency of the two tests. We consider a sequence

of densities &.(x) given by

(8.1) sn(x) - I + (c/n ) h(x)

where c > 0 and we have

1
(8.2) f h(x)dx o; jh(x)J < B < ; ch(x) > -1.

0

We define K. and G(v) as in (4.2).
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We shall use the results of Noether (see Fraser [6], pp. 272-273) to

compute limiting power and. efficiency with respect to the sequence mn(X).

We start by considering S(x) given by

(8.3) s(x) - 1 + ch(x)

where (8.2) is satisfied.
6+1 8t

Since the V2 statistic has the same behavior as V* * (1/n) il 2

we can use Theorem 4.1 to evaluate its limiting power. We find easily that

the mean of V* isn

1 1

(8.4) r2f g'(x)dx - r2 ( l+c'f hO(,)(l+ch'(x)) 1dz ).

0 0

Thus, m-2 in Noether's Theorem. Further, ve see that if we denote the

denominator of (4.1) by ac(V*), then

n~ n~
1

(8.5) lim [(* • R -0 ,

when vk.

It is easily verified that the remaining conditions of Noether's Theorem

are satisfied and that the limiting power of the e1 test against the sequence

(8.1) is
1

(8.6) 0(% - (C2r/(r+l)) f h2(x)dx)
0

To find the limiting power of the U test, we observe that an equivalent
. n1

test is the one which rejects the null hypothesis whenever U* a E(2r/(r+l)) - Un/n]n

is large. From (6.1) we see that the expected value of U* under (8.3) isn

-28-



II
.I(8.7) (2ra/(r+l))f [(1-,(,))/(r.g(x)),dx

0

r h2(x)(l+r+ch(x))'-1

0

Again it is easily verified that mw2. Denoting the denominator of (6.1)

by ac(U*), we have

(8.8) lin d2K. (U*)j0 )/W2V(o 0(U*)n')] - (2r/(r+l)3/2 )f h2(x)dx
n .- *. R, 0

when v-%.

We can easily show that the remaining conditions of the theorem are true

wo that the limiting power of the Un test is given by

1

(8.9) *(Ka,- (Car/(r+1)3/2)f hf(x)d ).

0

It is then easily verified that the efficiency of the run test relative

to the V2 teat is 1/(r+l). Thus as r, the ratio a/nhincreases the relative

efficiency of the run test decreases to zero.
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